
C++ Toolkit Book C Toolkit Resources for C++ Toolkit Users

24-1

24. C Toolkit Resources for C++ Toolkit Users
Created: April 1, 2003
Updated: September 16, 2003

Summary
For certain tasks it becomes necessary to use, or at least refer to, material from the NCBI C Toolkit.
This page simply collects a variety of links relevant to making use of the C Toolkit in the C++ Toolkit
environment.

• Working with the NCBI C Toolkit

• C Toolkit Documentation

• C Toolkit Queryable Source Browser

Using NCBI C and C++ Toolkits together
Note: Due to security issues, not all links in the public version of this file could be accessible by
outside NCBI users. Unrestricted version of this document is available to inside NCBI users at:
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/libs/c_cxx.html.

• Overview

• Shared Sources

• CONNECT Library

• ASN.1 Specifications

• Run-Time Resources

• LOG and CNcbiDiag

• REG and CNcbiRegistry

• MT_LOCK and CRWLock

• CONNECT Library in C++ Code

• Setting LOG

• Setting REG

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SB/hbr.html
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/libs/c_cxx.html


C++ Toolkit Book C Toolkit Resources for C++ Toolkit Users

24-2

• Setting MT-Locking

• Convenience call CONNECT_Init()

• C Toolkit diagnostics redirection

• CONNECT Library in C Code

• Convenience call CONNECT_Init()

Overview
When using both C and C++ Toolkits together in a single application, it is very important to
understand that there are some resources shared between the two. This document describes
how to safely use both Toolkits together, and how to gain from their cooperation.

Shared Sources
To maintain a sort of uniformity and ease in source code maintenance, CONNECT library is the first

library of both Toolkits kept same at the source code level. To provide data interoperability,
ASN.1 specifications have to be identical in both Toolkits, too.

CONNECT Library
CONNECT library is at the moment the only part of C code of both Toolkits, which is kept same in

its entirety in both Toolkits. The old API of CONNECT library is still supported by means of simple

wrapper code, which is situated in the C Toolkit only. There is an external safety script, which
periodically (controlled by a cron daemon) checks and maintains source file indentity. Conven-
tionally, all development for CONNECT library is done within the C++ Toolkit tree. When a modified

source file is committed to the CVS repository but is not yet updated in the C Toolkit tree, the
safety script detects the discrepancy, and then could be used to eliminate it by copying the newer
file over. If for some reason the modified version is mistakenly checked into C Toolkit tree then
the safety script alerts the situation.

ASN.1 Specifications
On a contrary to CONNECT library, the ASN.1 data specifications are maintained within C Toolkit

source structure, and have to be copied over to C++ Toolkit tree whenever they are changed.
There is the same (as for CONNECT library) safety script, which keeps "an eye" on those changes,

and sends an alert when C++ Toolkit ASN.1 specs go out of sync with their C Toolkit counter-
parts.

The full set of tools, which maintain identity of both CONNECT library and ASN.1 specifications

can be found in directory scripts/internal/c_toolkit.
However, the internal representations of ASN.1-based objects differ between the two toolkits.

If you need to convert an object from one representation to the other, you can use the template
class CAsnConverter<>, defined in ctools/asn_converter.hpp.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/scripts/internal/c_toolkit/check_sync.sh
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/scripts/internal/c_toolkit/check_sync.sh
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/scripts/internal/c_toolkit
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAsnConverter&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools/asn_converter.hpp


C++ Toolkit Book C Toolkit Resources for C++ Toolkit Users

24-3

Run-Time Resources
Being written for use "as is" in the NCBI C Toolkit and yet to be in the C++ Toolkit tree, CONNECT
library could not employ directly all the utility objects offered by the C++ Toolkit such as message
logging CNcbiDiag, registry CNcbiRegistry, and MT-locks CRWLock. All these objects were
replaced with helper objects coded entirely in C (as tables of function pointers and data).

On the other hand, throughout the code CONNECT library refers to predefined objects

g_CORE_Log (so called CORE C logger) g_CORE_Registry (CORE C registry), and

g_CORE_Lock (CORE C MT-lock), which actually are never initialized by the library, i.e. they are

empty objects, which do nothing. It is an application's resposibility to replace these dummies with
real working logger, registry, and MT-lock. There are two approaches, one for C and another one
for C++ application.

In a C program connect/ncbi_util.h with calls to CORE_SetREG(), CORE_SetLOG(), and
CORE_SetLOCK() can be used to set up the registry, the logger, and the MT-lock, correspond-
ingly. There are even more convenience routines concerning CORE logger, like CORE_SetLOG-
FILE(), CORE_SetLOGFILE_NAME(), which facilitate redirecting logging messages to either a C
stream (FILE*) or a named file.

In a C++ program, yet another additional step is necessary of converting native C++ objects,
by calls declared in connect/ncbi_core_cxx.hpp and as described later in this section, into their C
equivalents, so that the C++ objects could be used where types LOG, REG or MT_LOCK are
expected.

LOG and CNcbiDiag
CONNECT library has its own logger, which has to be set by any of routines declared in connect/

ncbi_util.h: CORE_SetLOG(), CORE_SetLOGFILE() etc. On the other hand, the interface
defined in connect/ncbi_core_cxx.hpp provides the following C++ function to convert a logging
stream of the NCBI C++ Toolkit into a LOG object:
 
LOG LOG_cxx2c (void) 

which creates the LOG object on top of the corresponding C++ CNcbiDiag object, and then
both C and C++ objects could be manipulated interchangeably, causing exactly the same effect
on the underlying logger. Then, the returned C handle LOG can be subsequently used as a
CORE C logger by means of CORE_SetLOG(), like in the following nested calls: CORE_SetLOG
(LOG_cxx2c());

REG and CNcbiRegistry
connect/ncbi_core_cxx.hpp declares the following C++ function to bind C REG object to
CNcbiRegistry used in C++ programs built with the use of the NCBI C++ Toolkit:
  
REG REG_cxx2c (CNcbiRegistry* reg, bool pass_ownership = false) 

Similarly to CORE C logger setting, the returned handle can be later used with
CORE_SetREG() declared in connect/ncbi_util.h to set up the global registry object (CORE C
registry).

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE_NAME
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=LOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=REG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=MT_LOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=LOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=LOG_cxx2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=REG_cxx2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h


C++ Toolkit Book C Toolkit Resources for C++ Toolkit Users

24-4

MT_LOCK and CRWLock
There is a function
  
MT_LOCK MT_LOCK_cxx2c (CRWLock* lock, bool pass_ownership = false) 

declared in connect/ncbi_core_cxx.hpp, which converts an object of class CRWLock into a C
object MT_LOCK. The latter can be used as an argument to CORE_SetLOCK() for setting the
global CORE C MT-lock, used by a low level code, written in C. Note that passing 0 as the lock
pointer will effectively create a new internal CRWLock object, which will then be converted into
MT_LOCK and returned. This object gets automatically destroyed when the corresponding
MT_LOCK is asked to do so. If the pointer to CRWLock is passed non NULL then the second

argument can specify whether resulting MT_LOCK acquires the ownership of the lock, thus is
able to delete the lock when destructing itself.

CONNECT Library in C++ Code
Setting LOG

To set up the CORE C logger to use the same logging format of messages and destination as
used by CNcbiDiag, the following sequence of calls may be used:
  
CORE_SetLOG(LOG_cxx2c()); 
SetDiagTrace(eDT_Enable); 
SetDiagPostLevel(eDiag_Info); 
SetDiagPostFlag(eDPF_All); 

Setting REG
To set the CORE C registry be the same as C++ registry CNcbiRegistry, the following call is
necessary:
  
CORE_SetREG(REG_cxx2c(cxxreg, true)); 

here cxxreg is a CNcbiRegistry registry object created and maintained by a C++ applica-

tion.

Setting MT-Locking
To set up a CORE lock, which is used throughout the low level code, including places of calls of
non-reentrant library calls (if no reentrant counterparts were detected during configure process),
one can place the following statement close to the beginning of the program:
  
CORE_SetLOCK(MT_LOCK_cxx2c()); 

Note that the use of this call is extremely important in a multi-threaded environment.

Convenience call CONNECT_Init()
Header file connect/ncbi_core_cxx.hpp provides convenience call, which sets all shared CON-
NECT-related resources discussed above for an application program written within the C++ Toolkit

framework (or linked solely against the libraries contained in the toolkit):
  
void CONNECT_Init(CNcbiRegistry* reg = NULL); 

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=MT_LOCK_cxx2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONNECT_Init
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNcbiRegistry


C++ Toolkit Book C Toolkit Resources for C++ Toolkit Users

24-5

The call takes only one argument, an optional pointer to a registry, which is used by the
application, and should also be considered by the CONNECT library. No registry will be used if

NULL gets passed. The ownership of the registry is passed along. This fact should be noted by an

application doing extensive use of CONNECT stuff in static classes, i.e. prior to or after main(),

because the registry can get deleted before CONNECT library stops using it. The call also ties

CORE C logger to CNcbiDiag, and privately creates CORE C MT-lock object (on top of
CRWLock) for internal synchronization inside the library.

An example on how to use this call could be found in the test program
test_ncbi_conn_stream.cpp. It shows how to properly setup CORE C logger, CORE C registry
and CORE C MT-lock in order for them to use the same data both in C and C++ parts of both the
library and the remaining code of the application.

Another good source of information is working application examples found in src/app/
id1_fetch.

Note from the examples that the convenience routine does not change logging levels or dis-
able/enable certain logging properties. If this is desired, the application still has to use separate
calls.

C Toolkit diagnostics redirection
In a C/C++ program linked against both NCBI C++ and NCBI C Toolkits the diagnostics mes-
sages (if any) generated by either Toolkit are not necessarily directed through same route, which
may result in lost or garbled messages. To set the diagnostics destination be the same as
CNcbiDiag's one, and thus to guarantee that the messages from both Toolkits will be all stored
sequentially and in the order they were generated, there is a call
  
#include <ctools/ctools.h> 
void SetupCToolkitErrPost(void); 

which is put in a specially designated directory ctools providing back links to the C Toolkit
from the C++ Toolkit.

CONNECT Library in C Code
CONNECT library in C Toolkit has a header connect/ncbi_core_c.h;, which serves exactly the

same purposes that does connect/ncbi_core_cxx.hpp described previously. It defines an API to
convert native Toolkit objects, like logger, registry, and MT-lock into their abstract equivalents,
LOG, REG, and MT_LOCK, respectively, which defined in connect/ncbi_core.h, and subse-
quently can used by CONNECT library as CORE C objects.

Briefly, the calls are:

•   
LOG LOG_c2c (void); 

Create a logger LOG with all messages sent to it rerouted via the error logging facility used
by the C Toolkit.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNcbiDiag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CRWLock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test/test_ncbi_conn_stream.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/id1_fetch
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/id1_fetch
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools/ctools.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetupCToolkitErrPost
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_core_c.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=LOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=REG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=MT_LOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_core.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=LOG_c2c


C++ Toolkit Book C Toolkit Resources for C++ Toolkit Users

24-6

•   
REG REG_c2c (const char* conf_file); 

Build a registry object REG from a named file conf_file. Passing NULL as an argument

causes the default Toolkit registry file to be searched for and used.

•   
MT_LOCK MT_LOCK_c2c (TNlmRWlock lock, int/*bool*/ pass_ownership); 

Build an MT_LOCK object on top of TNlmRWlock handle. Note that passing NULL effec-

tively creates an internal handle, which is used as an underlying object. Ownership of the
original handle can be passed to the resulting MT_LOCK by setting the second argument
to a non-zero value. The internally created handle always has its ownership passed along.

Exactly the same way as described in previous section, all objects, resulting from the above
functions, can be used to set up CORE C logger, CORE C registry, and CORE MT-lock of CON-
NECT library using the API defined in connect/ncbi_util.h: CORE_SetLOG(), CORE_SetREG(),
and CORE_SetLOCK(), respectively.

Convenience call CONNECT_Init()
As an alternative to using per-object settings shown in the previous paragraph, the following "all-
in-one" call is provided:
  
void CONNECT_Init (const char* conf_file); 

This sets CORE C logger to go via Toolkit default logging facility, causes CORE C registry to
be loaded from the named file (or from the Toolkit's default file if conf_file passed NULL), and

creates CORE C MT-lock on top of internally created TNlmRWlock handle, the ownership of
which is passed to the MT_LOCK.

Note again that properties of logging facility is not affected by this call, i.e. the selection of
what gets logged, how, and where, should be controlled by using native C Toolkit's mechanisms
defined in ncbierr.h.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=REG_c2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=MT_LOCK_c2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=TNlmRWlock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CORE_SetLOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CORE_SetLOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CONNECT_Init
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/corelib/ncbierr.h

